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Abstract
The intrinsic defects in KMgF3, such as VK centres and self-trapped
excitons (STEs), are studied by the ab initio method and the extended-ion
method. In the ab initio method, the Madelung potentials are introduced into
the Fock operator terms to perform calculations on clusters modelling ionic
solids. It is found that the VK centre moves toward the nearby interstitial site,
still keeping C2v symmetry; and the STE is unstable in the on-centre symmetry,
undergoing a relaxation consisting of an axial translation superimposed with
a rotation. Such a translation plus rotation relaxation of the STE in KMgF3

is quite different from those in alkali halides and in alkali-earth halides. The
calculated results for the excitation energy of the VK centre and for the emission
energy of the STE are in reasonable agreement with experiments.

1. Introduction

KMgF3 single crystals are known to have wide application as fast UV scintillators [1]. Suitably
doped crystals have been successfully used in tunable solid state lasers [2] and in radiation
dosimetry [3]. Even though the properties of rare-earth element doped KMgF3 have been
extensively investigated from practical viewpoints [4, 5], little is known about intrinsic defects
in the host. In order to understand optoelectronic processes in the host, the knowledge of the
intrinsic defects is indispensable.

The details of hole motion in the ion crystal are well understood. At low temperatures, if the
electron is ionized from one of the halide ions and is trapped elsewhere, the self-trapped hole,
which is called the VK centre, will be formed. It is a hole trapped between two adjacent anions
and can be looked on as a molecular ion X−

2 embedded in the host crystal. When an electron
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is captured by a self-trapped hole, it may form a self-trapped exciton (STE). The relaxation
of the STE leads to the formation of the F–H centre pair. The F centre is a typical colour
centre consisting of an electron trapped at an anion vacancy. The H centre is an interstitial
halogen atom bonded covalently to the site anion. It is a homonuclear diatomic defect with
asymmetric hole distribution. Experimentally, the VK absorption band has its peak at 3.7 eV
with width of 0.9 eV [6]. Thermal reorientation of the VK centre occurs by π/2 jumps of the
molecular axis of the hole trap centre with an activation energy of 0.26 eV and by π/3 jumps
with an activation energy of 0.29 eV [7]. Alcala et al [8] identified the intrinsic luminescence
of KMgF3 as being of STE origin. The STE luminescence band is about 3.65 eV. The optically
detected magnetic resonance of STE in KMgF3 was studied by Hayes et al [9], confirming
that the STE luminescence is emitted from a triplet state.

Various calculations [10–12] of the STEs in alkali halides (AHs) have been presented
both by the extended-ion method and by the ab initio method. The off-centre structure of the
STEs in AHs, which was predicted by Song and co-workers [10–12], has been established.
Recently, Gavartin et al [13] attempted to model charge self-trapping in NaCl within the
density functional theory. Furthermore, quantum chemical INDO calculations were used to
model the polarons and excitons in ABO3 perovskite crystals [14–17]. But, to the best of our
knowledge, there has been no corresponding theoretical study in perovskite-structural halides.
The objective of this paper is to study theoretically the structure of the VK centre and STE in
KMgF3. Two computational methods, the extended-ion method [12] and the ab initio method
based on the modified GAUSSIAN 94 (G94) [18], are used. In the ab initio method, the
Madelung potentials have been included in the Fock operator terms to perform calculations
on clusters modelling ionic solids. Both methods reveal that the VK centre moves toward
the nearby interstitial site, keeping the molecular axis still along the [110] direction, but the
rotation of the H centre is necessary for the formation of a stable STE. The structure of the
STE and its decay behaviour are studied and compared with those in other ionic crystals. The
calculated results for the excitation energy of the VK centre and the emission energy of the
STE are in good agreement with experiment.

2. Methods of calculation

The ab initio calculation is based on the G94 code. The quantum cluster is partitioned into
two regions. The inner region I includes the defect, its nearest and sometimes the next-nearest
neighbours. The defect is at the centre of region I, all ions in which are allowed to move.
The outer region II includes all the nearest and the next-nearest neighbours of the surface
ions of region I. It can prevent the surface ions of the region I from undergoing unphysical
displacements in the course of geometry optimization. The G94 code has been modified to
create the infinite ionic crystal field effect by the Ewald method [19]. The calculated Madelung
potential enters the Fock matrix and the Hartree–Fock–Roothaan equation is then solved self-
consistently.

The Hartree–Fock energy of an isolated cluster can be expressed as

E0 =
∑

µν

Pµνhµν + 1
2

∑

µνλσ

Pµνλσ (µν|λσ) + Vnuc (1)

where Pµν and Pµνλσ are the one- and two-particle density matrices, respectively. hµν and
(µν|λσ) are the one- and two-electron integrations, respectively. Vnuc is the nuclear–nuclear
repulsive energy. When the cluster is embedded in the ionic crystal, the Hartree–Fock energy
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is given by

E ′ = E0 +
∑

µν

Pµν〈χµ(r − RA)|
+∞∑

j=N+1

Q j

|r − R j | |χν(r − RB)〉

+
N∑

i=1

Zi (A)

+∞∑

j=N+1

Q j

|RA − R j | . (2)

The second and third terms are the interaction energies for the electrons and the nuclei of the
cluster, respectively, with the remaining ionic crystal. Here, N is the number of cluster ions,
Z is the nucleus charge of the ion in the cluster and Q j is the net charge of the remaining ion
with QF− = −1(e), QK+ = +1(e), and QMg2+ = +2(e). We define ϕi

′(A) as

ϕi
′(A) =

+∞∑

j=N+1

Q j

|RA − R j | , (3)

which is the cluster-subtracted Madelung potential at the quantum nucleus site A. The
Madelung potentials are evaluated using the Ewald method [19]. The cluster-subtracted
Madelung potentials are obtained by subtracting from the Madelung potentials those
contributions arising from the other ions comprising the quantum cluster. We take ϕ′ = ϕ′(A)

for the diagonal matrix element with µ, ν ∈ A; and ϕ′ = 1
2 [ϕ′(A)+ϕ′(B)] for the off-diagonal

matrix element with µ ∈ A, ν ∈ B . Equation (2) may be approximated as

E ′ � E0 +
∑

µν

Pµνϕ
′〈χµ(r − RA)|χν(r − RB)〉 +

N∑

i=1

Zi(A)ϕ′
i(A). (4)

This approximation is very similar to that used in [20], in which it was justified to be reliable
beyond the range of so-called Madelung radii (several ånstroms). In this paper, since the ions
in region I which are allowed to move are surrounded by the outer region II, this approximation
is reasonable for the ions in region I and is unlikely to affect our results. In our embedded
cluster method, the quantum cluster is embedded into the infinite ionic crystals; the problem
of the poor convergence about the long-range Coulomb potential is handled by introducing
the Ewald method. This embedded method is different from that in [21] and [22], in which
a quantum cluster is embedded into a large finite polarizable lattice represented by the shell
model.

An important consideration for the ab initio calculation is the choice of basis sets. Although
neutral atom basis sets are compiled by Huzinaga [23], we sometimes find they are not suitable
for studying the defects in ionic crystals from the analysis of the Mulliken population. The
wavefunctions of K+, Mg2+ and F− within region I are taken from the Slater-type Hartree–
Fock expansion functions of ions [24] and then fitted to eight Gauss-type orbital (GTOs). The
wavefunction of the fluorine ion forming a VK centre or an H centre is taken as an average
of the Slater-type Hartree–Fock expansion functions of F0 and F− and then fitted to eight
GTOs. To test this chosen basis we have calculated the equilibrium bond length and optical
transition energies (�u ⇒ �g and �u ⇒ πg) for an isolated molecular ion F−

2 . The calculated
results are found in reasonable agreement with those calculated in the molecular-orbital self-
consistent-field approximation [25]. In region II, F− are also represented by the fitted eight
GTOs, whereas K+, Mg2+ are replaced respectively by LANL1 and CHF pseudo-potentials [18]
(no basis used) in order to reduce the computational time. For an exciton, a ghost atom [18]
with the optimized basis functions is used to model the excited electron. The triplet exciton
state can be handled by an unrestricted Hartree–Fock (UHF) calculation, in which the number
of bases used is the same as the number of occupied ‘alpha electron’ orbitals.



4570 G Q Huang et al

G94 is based on the quantum chemical theory; it is more accurate especially in calculating
the optical absorption or luminescence energy of the defect system. However, its computation
time is in great demand and it is not suitable for studying the diffusion of a VK centre or H
centre where a big cluster has to be adopted. As a result, the extended-ion method is used in this
study. It is found that numerical results obtained by the two methods are close to each other.

In the extended-ion method, the excited electron is studied by the hybrid method within the
framework of the one-electron Hartree–Fock approximation. The defect electron wavefunction
ψ is required to be orthogonal to the occupied orbitals of the crystal ion, yielding

|ψ〉 = |ϕ〉 −
∑

νl

|χνl〉〈χνl |ϕ〉, (5)

where χνl is the occupied orbital ν at site l, and ϕ is represented by a linear combination of
floating 1s Gaussians. The secular determinant is solved for this wavefunction. The occupied
ionic orbitals χ are divided into two groups. The terms from the deeper electron shells in the
secular determinant are represented by the ‘ion-size’ parameters. For the outermost s and p
shells, all the required terms (the screened Coulomb term, exchange term and overlap term)
in the secular determinant are calculated explicitly and suitable interpolation formulae are
devised. For an exciton, there are two open shells in the electron configuration. Only the
exchange interaction between the electrons on the molecular ion with an open shell and the
excited electron depends on the spin state. For the spin triplet state, the exchange integral
is the same as that for a closed shell. A detailed description of this hybrid method was
given in [12]. The long-range Coulomb energy is treated by the Ewald summation [19]. The
interactions between ions as well as the polarization are classically treated, respectively, using
the Born–Mayer type pair potentials and polarizable dipole approximation. The molecular
ions sharing the hole are represented by a CNDO code. The hole charge distribution resulted
from the CNDO calculation is imported into the extended-ion package as it is needed. At the
same time, the CNDO energy depends on the electrostatic potential produced by the lattice
ions as well as the defect electron. The two parts iterate constantly to maintain consistency
during the lattice relaxation. In determining the equilibrium structure of the defect system, the
minimization routine of its total energy is improved by relaxing all ions at the same time [26].
This approach leads to an improved symmetry of the ionic displacement around the defect.

3. Results and discussions

KMgF3 has the perovskite structure, in which a K+ ion resides at the centre of a cubic unit
cell with Mg2+ at each corner; the F− ions are centred on each crest line, as shown in figure 1.
The lattice constant is a0 = 7.51 au. The VK centre is a hole trapped between two adjacent
anions oriented along the [110] direction as illustrated by the dashed lines in figure 1 and
can be looked on as a molecular ion F−

2 embedded in the host crystal. We first optimize the
structure of the VK centre in KMgF3 by the extended-ion method. The VK centre and its
nearest and next-nearest neighbour ions (total 23 ions as labelled in figure 1) are allowed to
move. The calculated results of the distorted displacements are tabulated in table 1, in which
only those ions with distortion larger than 2% of a0 are included. It is found that the most
important relaxation is between the two ions forming the VK centre. The distance between
them is obtained as about 3.54 au, much smaller than 5.31 au, the value in a perfect crystal. It
follows that the covalent bonded F−

2 molecular ion has formed. From the structure of the VK

centre shown in figure 1, we can see that the VK centre moves toward the nearby interstitial
site (I.S. shown in figure 1), but keeping the molecular axis still along the [110] direction. The
symmetry of the VK centre is C2v, while it is D2h in AHs. This difference is caused by the
different crystal structures.
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Figure 1. The cluster of ions which are allowed to move in the study of the VK centre. The
optimized geometrical structure of the VK centre is sketched.

We also study the VK centre by the ab initio code. The quantum cluster used consists of
23 ions in region I as shown in figure 1 and 65 ions in region II. We first test the quality of
the basis functions employed and the embedding procedure by examining the stability of the
chosen quantum cluster. A full geometry optimization of the ground-state perfect cluster is
performed. The largest ion displacements in region I are about 0.04 Å. This indicates that our
approach is reliable and reasonable. We then optimize the geometry structure of the defect
cluster including the VK centre. The results of distorted configurations in region I are given by
the values within the brackets in table 1. It is found that the calculated results obtained from
the two methods are close to each other. For example, the bond length of the F−

2 obtained from
the ab initio calculation is 3.62 au, slightly larger than 3.54 au from the extended-ion method.

In order to study the reorientation of the VK centre, we need to use a bigger cluster. In
this calculation only the extended-ion method is used, for it is difficult to use the ab initio
method when the cluster is fairly big. For the study of the π/2 jump, three F− ions (F1, F2

and F3 shown in figure 1) are treated by the CNDO code. At the beginning, the covalent bond
is assumed to be along the [110] direction, indicating a covalent bond between ion F1 and F2.
Then let F1 move toward F3 in several steps and minimize the total energy at each step by
allowing the surrounding ions to relax. Finally, it is found that a covalent bond between F1 and
F3 is formed; at the same time, F2 moves to its corresponding position in a perfect crystal. This
is a bond-switching from the [110] to the [11̄0] direction. For the π/3 jump of the VK centre,
we have performed a similar simulation, three F− ions (F1, F2 and F11) treated by the CNDO
code. The molecule bond is transformed from the [110] to the [101] direction. The calculated
energy barriers in the processes of bond-switching are about 0.33 and 0.38 eV, respectively, for
the π/2 and the π/3 jump. They are close to but slightly larger than the experimental values
of the activation energy [7] (0.26 and 0.29 eV, respectively).

For the STE study, two FGOs are positioned on the [110] axis at the perfect lattice sites
occupied by the molecular ions. The optimized FGO exponent is 0.08 au. The geometry
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Table 1. The distorted displacements along the x , y, and z directions (	x , 	y, and 	z) around
the VK centre and the STE. The first values and those within the brackets are obtained from the
extended-ion calculations and the ab initio calculations, respectively. F1 and F2 stand for two ions
that form the VK centre or H centre. The second column indicates the coordinates of the ions in a
perfect crystal. The displacements and the coordinates are in units of the lattice constant a0. Only
ions with displacement larger than 2% of a0 are listed.

Ion Ion Coordinates 	x 	y 	z

F1 (0.5, 0.0, 0.0) −0.05(−0.05) 0.12(0.11) 0.00(0.00)
F2 (0.0, 0.5, 0.0) 0.12(0.11) −0.05(−0.05) 0.00(0.00)
Mg1 (0.0, 0.0, 0.0) −0.05(−0.04) −0.05(−0.04) −0.00(−0.00)

Mg2 (1.0, 0.0, 0.0) 0.03(0.03) 0.00(0.01) −0.00(−0.00)

Mg3 (0.0, 1.0, 0.0) 0.00(0.01) 0.03(0.03) −0.00(−0.00)

VK K1 (0.5, 0.5, 0.5) 0.02(0.02) 0.02(0.02) 0.05(0.04)
K2 (0.5, 0.5, −0.5) 0.02(0.02) 0.02(0.02) −0.05(−0.04)

F5 (−0.5, 0.0, 0.0) 0.00(−0.00) 0.03(0.05) 0.00(0.00)
F6 (0.0,−0.5, 0.0) 0.03(0.05) 0.00(−0.00) 0.00(0.00)
F7 (−0.5, 1.0, 0.0) 0.02(0.03) −0.03(−0.07) 0.00(0.00)
F8 (1.0, −0.5, 0.0) −0.03(−0.07) 0.02(0.03) 0.00(0.00)

F1 (0.5, 0.0, 0.0) 0.05(0.03) −0.07(−0.09) 0.01(0.01)
F2 (0.0, 0.5, 0.0) 0.37(0.41) −0.14(−0.14) 0.00(0.00)
Mg1 (0.0, 0.0, 0.0) −0.07(−0.02) 0.05(−0.02) −0.01(−0.01)

Mg2 (1.0, 0.0, 0.0) 0.05(0.03) −0.00(0.00) −0.01(−0.00)

Mg3 (0.0, 1.0, 0.0) 0.01(0.00) −0.06(0.03) −0.00(−0.00)

K1 (0.5, 0.5, 0.5) 0.01(0.03) 0.03(0.02) 0.08(0.07)
STE K2 (0.5, 0.5, −0.5) 0.01(0.03) 0.03(0.02) −0.07(−0.07)

K3 (−0.5, 0.5, 0.5) −0.01(−0.01) 0.01(−0.01) 0.02(0.04)
K4 (−0.5, 0.5, −0.5) −0.01(−0.01) 0.02(−0.01) −0.02(−0.04)

F4 (0.5, 1.0, 0.0) 0.01(−0.00) 0.04(0.02) 0.00(0.00)
F5 (−0.5, 0.0, 0.0) 0.00(−0.01) −0.03(−0.02) 0.00(0.00)
F6 (0.0, −0.5, 0.0) 0.02(−0.01) −0.03(−0.01) 0.00(0.00)
F9 (0.0, 1.0, 0.5) 0.00(0.00) 0.02(0.03) 0.01(0.00)
F10 (0.0, 1.0, −0.5) 0.01(0.00) 0.02(0.03) −0.01(−0.00)

optimizations of this defect system are performed by the extended-ion method and the ab
initio method. The adopted quantum cluster is the same as that in the VK study. The stable
geometrical structure of the STE is illustrated in figure 2. With the molecular ions displacing
from the on-centre geometry, the electron is immediately localized on one vacancy site. So
only one FGO is illustrated in figure 2. The molecular axis is not along the original [110]
direction. The molecular ion shifts along [110] and meanwhile rotates toward [010] where the
interstitial site is located. The angles of the rotation are about 22◦ and 29◦, respectively, by
the extended-ion calculation and the ab initio method. The calculated results for the distorted
displacements of those ions which are larger than 2% of a0 are also tabulated in table 1. The
ions around the excited electron represented by ‘FGO’ have large displacements. The two
methods give the similar distortions for the molecular ions, but have some differences for other
ions. For example, the Mg3 ion even has different displacement direction. This may stem
from the fact that the short-range interactions between the defect electron and the ions are not
well reproduced in the extended-ion method.

In order to study the possibility of a larger separation between the electron and hole, the
adiabatic-potential-energysurfaces (APESs) are calculated by the extended-ion method. Three
F− ions (F1, F2 and F8 in figure 2) are treated by the CNDO code. In the initial configuration,
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Figure 2. The cluster of ions which are allowed to move in the study of the STE. The optimized
geometrical structure of the STE and the two possible pathways ‘a’ and ‘b’ of the STE decay are
sketched.

the covalent bond is formed between F1 and F2 as shown in figure 2. Then let F1 move toward
F8 in several steps and minimize the total energy at each step by allowing the surrounding ions
to relax. Two possible pathways for the F1 movement are chosen, as illustrated by ‘a’ and ‘b’
in figure 2. For path ‘a’, F1 moves 2.5 au in five steps along the [110] row of fluorides. For
path ‘b’, F1 first moves 1.5 au in three steps along the [010] direction and then moves 1.5 au
in three steps toward the F8. It is found that the molecule bond is formed between F1 and
F8 in the final step for both paths ‘a’ and ‘b’. However, the molecular bonds have different
orientations for the two cases. The calculated APESs as a function of the distance d between
the F centre and H centres are shown in figure 3. The position of the H centre is defined as the
position of the centre of gravity of the hole charge distributed on the three fluorine ions (F1,
F2 and F8). The energies are plotted with respect to that of the perfect lattice. The APES for
path ‘b’ is relatively flat, while for path ‘a’ the energy rises monotonically on the trajectory of
further F–H separation. Since the energy for path ‘b’ is always lower than that for path ‘a’, the
separation between the electron and hole is favourable for path ‘b’. This may be associated
with the asymmetry on both sides of the [110] row of fluorides.

We wish to point out that the geometrical structure of the STE in KMgF3 is of a new type
of configuration, quite different from those in AHs and in alkali-earth halides (AEHs). In all
three kinds of ionic crystal (AHs, AEHs and KMgF3), the STE is unstable for the on-centre
symmetry. However, the different crystal structures result in different configurations of the
STE in them. First, the relaxation of the STE in AHs is an axial translation along the [110]
row of halides. Previous studies [10–12] confirm that the STE in AHs undergoes a symmetry-
breaking axial relaxation, leading to a separation of the electron and hole. The amount of axial
translation depends significantly on the type of AH. Kan’no et al [27] observed the π-band
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Figure 3. The APESs of the STE for two possible trajectories are plotted as functions of the
distance d between F and H centres. The position of the H centre is defined as the position of the
centre of gravity of the hole charge. Path ‘a’ and path ‘b’ are defined in the text and sketched in
figure 2.

Stokes shift to the free exciton absorption energy and concluded that there are three types of
STE in AHs. Calculations by Song et al [10, 12] showed that the type I STE should probably
be described as ‘nearly on centre’. This group is typified by NaBr with a large molecular ion
in a small lattice. Type III STE was attributed to the off-centre STE with configuration close to
the nearest-neighbour F–H pair. In this group the molecule is relatively small compared with
the lattice constant. Type II is then an intermediate degree of off-centre relaxation. Second,
the relaxation of the STE in AEHs is a rotation of the molecular ions from the [100] to the
[111] direction. According to the studies of optically detected magnetic resonance [28] and
the theoretical calculation [29], the STE in AEHs is equivalent to the nearest-neighbour F–H
pair with the F−

2 molecular axis along the [111] crystal axis, one of the bonded halide ions
on a substitutional site and the other on an interstitial site. Finally, the present calculated
result shows that the STE in KMgF3 undergoes a relaxation consisting of an axial translation
superimposed with a rotation from the [110] toward the [010] direction, as sketched in figure 2.
As a result, it is a new type of STE, whose relaxation is neither a simple translation as in AHs
nor a pure rotation as in AEHs. Furthermore, we want to mention that the structure of the STE
in the KMgF3 ionic crystal is also different from that in partly covalent ABO3 perovskites [14–
17]. Quantum chemical INDO calculations combined with the periodic defect model have
demonstrated that the triplet exciton for example in BaTiO3 is a triad centre consisting of one
active O atom (O1) and two Ti atoms. The main effect is the charge transfer from the O1 atom
onto the nearest Ti1 atom. These two atoms are displaced toward each other, whereas another
Ti2 atom experiences a repulsion from the O1 atom and is displaced outwards. So, the exciton
in oxide perovskites is also called the charge transfer vibronic exciton.

The polarization pattern of the STE is the same in AHs and KMgF3. The electron is
well localized on the halide ion vacancy and the hole is mainly localized on the halide ion
nearest to the electron. The hole distribution in KMgF3 by our calculations is 0.26 (F1) and
0.74 (F2) with F2 nearest to the excited electron. However, there are some differences in the
conversion from STEs to the Frenkel F–H defect pair between the two kinds of lattice. In
AHs all three types of STE can be further separated with energy barrier no larger than about
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0.2 eV [11]. The existence of a [110] row of halide ions plays an important role in promoting
the efficient bond-switching sequence of the halide molecular anion, leading to a low barrier
for F–H pair separation. In KMgF3, although it has a [110] row of fluorides, the decay of
the STE is not along the [110] row because of the asymmetry on both sides of the [110] row.
Further separation of the STE into a second-neighbour F–H pair may be along path ‘b’, as
discussed above, involving bond-switchings mediated by rotations. Such a difference may
originate from the difference in crystal structure between AHs and KMgF3.

The optical absorption and emission energies of the intrinsic defects are calculated by using
the UHF method in the G94 code. For the VK centre, the main optical absorption transition is
�u ⇒ �g. The calculated transition energy is 3.96 eV, which is in good agreement with the
experimental peak energy, 3.7 eV, of the VK absorption band [8]. The emission energy of the
STE is taken as the difference in energy between the stable triplet STE and the ground state
with the same ion positions. Our calculated value of the emission energy is 4.06 eV, and the
experimental value is about 3.65 eV [6], in reasonable agreement with each other.

In summary, the VK centre and STE in KMgF3 have been studied by the extended-ion
method and the ab initio method. Very close calculated results are obtained from the two
methods. It seems reasonable and reliable to use the Madelung potentials instead of hundreds
and thousands of fixed point charges to perform calculations on clusters modelling ionic solids.
The VK centre moves toward the nearby interstitial site, still keeping C2v symmetry. The STE
is unstable in the on-centre symmetry, undergoing a relaxation consisting of an axial translation
superimposed with a rotation. The structure of the STE and its decay behaviour are studied
and compared with those in other ionic crystals. The calculated result of the excitation energy
of the VK centre and the emission energy of STE by the UHF method in the G94 code are in
reasonable agreement with experimental data.
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